
Designation: F3201 − 16

Standard Practice for
Ensuring Dependability of Software Used in Unmanned
Aircraft Systems (UAS)1

This standard is issued under the fixed designation F3201; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This standard practice intends to ensure the dependabil-
ity of UAS software. Dependability includes both the safety
and security aspects of the software.

1.2 This practice will focus on the following areas: (a)
Organizational controls (for example, management, training) in
place during software development. (b) Use of the software in
the system, including its architecture and contribution to
overall system safety and security. (c) Metrics and design
analysis related to assessing the code. (d) Techniques and tools
related to code review. (e) Quality assurance. (f) Testing of the
software.

1.3 There is interest from industry and some parts of the
CAAs to pursue an alternate means of compliance for software
assurance for small UAS (sUAS).

1.4 This practice is intended to support sUAS operations. It
is assumed that the risk of sUAS will vary based on concept of
operations, environment, and other variables. The fact that
there are no souls onboard the UAS may reduce or eliminate
some hazards and risks. However, at the discretion of the CAA,
this practice may be applied to other UAS operations.

1.5 This standard does not purport to address all of the
safety concerns, if any, associated with its use. It is the
responsibility of the user of this standard to establish appro-
priate safety and health practices and determine the applica-
bility of regulatory limitations prior to use.

2. Referenced Documents

2.1 FAA Standard:2

FAA 23.1309–1E System Safety Analysis and Assessment
for Part 23 Airplanes

2.2 IEC Standard:3

IEC 62304 Medical Device Software—Software Life Cycle
Processes

2.3 ISO Standards:4

ISO 9001 Quality Management Systems—Requirements
2.4 ICAO Standard:5

ICAO 9859 Safety Management Manual
2.5 NASA Standard:6

NASA Technical Briefs Making Sense out of SOUP (Soft-
ware of Unknown Pedigree)

2.6 RTCA Standards:7

RTCA DO-178C Software Considerations in Airborne Sys-
tems and Equipment Certification

RTCA DO–278A Software Integrity Assurance Consider-
ations for Communication, Navigation, Surveillance, and
Air Traffic Management (CNS/ATM) Systems

RTCA DO-326 Airworthiness Security Process Specification
2.7 Military Standards:8

Department of Defense Joint Software System Safety Hand-
book

MIL-STD-882E Department of Defense Standard for Sys-
tem Safety

3. Terminology

3.1 Definitions of Terms Specific to This Standard:
3.1.1 application programming interface (API)—definition

of the inputs and outputs for operations intended for use by
other software modules.

3.1.2 architecture—architecture is made up of the definition
of the sUAS Software components, the data that flows between

1 This practice is under the jurisdiction of ASTM Committee F38 on Unmanned
Aircraft Systems and is the direct responsibility of Subcommittee F38.01 on
Airworthiness.

Current edition approved Sept. 1, 2016. Published September 2016. DOI:
10.1520/F3201-16.

2 Available from Federal Aviation Administration (FAA), 800 Independence
Ave., SW, Washington, DC 20591, http://www.faa.gov.

3 Available from International Electrotechnical Commission (IEC), 3, rue de
Varembé, P.O. Box 131, 1211 Geneva 20, Switzerland, http://www.iec.ch.

4 Available from International Organization for Standardization (ISO), ISO
Central Secretariat, BIBC II, Chemin de Blandonnet 8, CP 401, 1214 Vernier,
Geneva, Switzerland, http://www.iso.org.

5 Available from International Civil Aviation Organization (ICAO), 999 Robert-
Bourassa Blvd., Montreal, Quebec H3C 5H7, Canada, http://www.icao.int.

6 Available from U.S. National Air and Space Administration (NASA), 300 E.
Street, SW, Suite 5R30, Washington, DC 20546, http://www.nasa.gov.

7 Available from Radio Technical Commission for Aeronautics (RTCA), 1150
18th St., NW, Suite 910, Washington, DC 20036, http://www.rtca.org.

8 Available from DLA Document Services, Building 4/D, 700 Robbins Ave.,
Philadelphia, PA 19111-5094, http://quicksearch.dla.mil.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

1

 



the components (data flow), and the order of execution of the
components (control flow).

3.1.3 code churn—the quantity and frequency of additions,
deletions, and modifications to the source code for software.

3.1.4 code coverage—a measure used to describe the degree
to which the source code of a program is tested by a particular
test suite.

3.1.5 customer—includes stakeholders outside of the sUAS
manufacturer who interface with the sUAS.

3.1.6 dependability—attribute of the software code that
produces the consequences for which it was written, without
adverse effects, in its intended environment.

3.1.7 dynamic program analysis—the practice of analyzing
software while it is executing, for example monitoring memory
access, allocation, and deallocation during program execution.
For example, Valgrind is a popular open-source tool that
performs this type of analysis.

3.1.8 externally developed software (EDS)—software devel-
oped outside of the sUAS manufacturer for which adequate
records of the development process may not be available.

3.1.9 EDS quality plan—a plan to address the software
quality in the event that EDS source code is not available. See
Appendix X2 for more details.

3.1.10 fuzz testing—a testing technique wherein the input to
a unit under test is unexpected in some way. Examples include
testing with input that is invalid, unexpected, or random.

3.1.11 internal user—includes stakeholders within the
sUAS manufacturer’s organization who interface with the
sUAS.

3.1.12 internally developed software (IDS)—software de-
veloped within the sUAS manufacturer’s organization.

3.1.13 penetration testing—a testing method intended to
identify and correct vulnerabilities and security defects by
attempting to break, bypass, or tamper with software security
controls.

3.1.14 publish—formalized release of a document to appro-
priate parties. A history should be maintained for published
documents. The history may be part of revision control system,
printed papers in a binder, or any other auditable system.

3.1.15 quality assurance—the practice of internally moni-
toring or auditing the development process.

3.1.16 red team evaluation—a process designed to detect
network and system vulnerabilities and test security by taking
an attacker-like approach to system, network, or data access, or
combinations thereof.

3.1.17 shall versus should versus may—use of the word
“shall” implies that a procedure or statement is mandatory and
must be followed to comply with this practice, “should”
implies recommended, and “may” implies optional at the
discretion of the supplier, manufacturer, or operator. Since
“shall” statements are requirements, they include sufficient
detail needed to define compliance (for example, threshold
values, test methods, oversight, and references to other stan-
dards). “Should” statements also represent parameters that

could be used in safety evaluations, and could lead to devel-
opment of future requirements. “May” statements are provided
to clarify acceptability of a specific item or practice, and offer
options for satisfying requirements.

3.1.18 small unmanned aircraft system (sUAS)—composed
of small unmanned aircraft (sUA-see 4.2) and all required
on-board subsystems, payload, control station, other required
off-board subsystems, any required launch and recovery
equipment, all required crew members, and command and
control (C2) links between sUA and the control station.

3.1.19 sUAS manufacturer—the organization and personnel
with design responsibility for the sUAS, including the depend-
ability of the system software.

3.1.20 sUAS Software—includes both IDS and EDS.

3.1.21 software baseline—a known state of product soft-
ware that has been formally reviewed and agreed on, that
thereafter serves as the basis for further development, and can
be changed only through formal change control procedures.

3.1.22 software vulnerability—a mistake in software (also
known as a weakness) that can be directly exploited to get a
cyber-enabled capability to function in an unintended manner.
Typically this is the violation of a reasonable security policy
for the cyber-enabled capability resulting in a negative techni-
cal impact. Although all vulnerabilities involve a weakness, not
all weaknesses are vulnerabilities. For example, Common
Vulnerabilities and Exposures is a dictionary of common
names for publicly known software-related vulnerabilities.

3.1.23 statement coverage—a testing technique that in-
volves the execution of all the statements at least once in the
source code. As a metric, it is used to calculate and measure the
number of statements in the source code which have been
executed.

3.1.24 threat modeling—a structured approach that enables
the sUAS manufacturer to identify, quantify, and address the
security risks associated with an application. The process
involves systematically identifying security threats and rating
them according to severity and level of occurrence probability.
The overall goal for threat modeling (also known as attack
modeling) is the creation of customized knowledge about
potential attacks relevant to the application or organization.
This customized knowledge guides decisions about changes to
the code and security controls to implement.

3.1.25 tier 1 requirements—required tasks and activities in
this practice for a software malfunction or penetration that
would result in a slight reduction in sUAS functional capabili-
ties or safety margins (for reference see Minor failure condi-
tions per AC 23.1309–1E).

3.1.26 tier 2 requirements—required tasks and activities in
this practice for any software malfunction or penetration that
would result in a significant reduction in sUAS functional
capabilities or safety margins with potential for injury (for
reference see Major failure conditions per AC 23.1309–1E).

3.1.27 tier 3 requirements—required tasks and activities in
this standard for any software malfunction or penetration that
would result in a large reduction in sUAS functional capabili-
ties or safety margins and could be expected to result in serious

F3201 − 16

2

 



injury or fatality (for reference see Hazardous or more severe
failure conditions per AC 23.1309–1E).

3.2 Acronyms:
3.2.1 API—Application Programming Interface

3.2.2 CAA—Civil Aviation Authority

3.2.3 EDS—Externally Developed Software

3.2.4 FAA—Federal Aviation Administration

3.2.5 IDS—Internally Developed Software

3.2.6 sUA—Small Unmanned Aircraft

3.2.7 sUAS—Small Unmanned Aircraft System

3.2.8 UAS—Unmanned Aircraft System

4. Applicability

4.1 The practice is written for all UAS intended for opera-
tion within airspace controlled by a CAA.

4.2 It is assumed that the maximum weight and airspeed of
a sUAS will be specified by the nation’s CAA. However,
unless otherwise specified by a nation’s CAA, this practice
applies only to sUA that:

4.2.1 Have a maximum takeoff gross weight of 55 lb (25 kg)
or less;

4.2.2 Have the capability to allow remote intervention by
flight personnel in the management of the flight during normal
operations.

4.3 This practice is intended for software that is part of a
sUAS. It may be used by itself or in conjunction with other
standards such as DO-178C, as deemed appropriate by the
sUAS manufacturer in accordance with CAA guidance. This
practice does not replace or supersede other standards, hence a
sUAS manufacturer may choose to certify under alternatives
such as DO-178C without reference to this practice, subject to
CAA guidance. Appendix X1 contains guidance for producing
artifacts corresponding to the requirements in Section 5.

4.4 The applicability of the practice extends to those soft-
ware items in the sUAS that implement functions essential to
safety. Software items that have no impact on safety are out of
scope for this practice. For example, payload software on the
sUAS that is not used to perform a safety-critical function is
outside the scope of this practice.

5. Requirements
NOTE 1—The hazard analysis (see 5.2.1) will be used to determine the

severity of a sUAS Software malfunction or failure and the corresponding
tier. See Appendix X2 for examples of tier assignments to sUAS
functions.

NOTE 2—The applicability of the each requirement is determined by the
tier assignment and noted in parentheses next to the requirement. Unless
otherwise indicated, sub-requirements inherit the tier assignments of the
parent requirement (for example, if requirement 5.2.1 applies to Tiers 1, 2,
and 3, then 5.2.1.1 also applies to the same tiers).

NOTE 3—Requirements may apply only to EDS, only to IDS, or to the
sUAS Software (includes EDS and IDS). Unless otherwise indicated,
sub-requirements apply to the kind of software (EDS, IDS, or sUAS
Software) specified in the parent requirement. See Appendix X3 for
scenarios for using this practice for EDS, IDS, and sUAS Software.

5.1 Organizational Planning:
5.1.1 Tier 1, 2, 3—The sUAS manufacturer shall publish an

organizational software plan for sUAS Software.

5.1.1.1 This plan shall define the roles and responsibilities
of each part of the manufacturer’s organization involved in
software acquisition, development, integration, and testing for
all sUAS software projects in the organization.

5.1.1.2 The sUAS manufacturer should educate company
executives and train employees on the risks and vulnerabilities
of the EDS integration or software development approach, or
both.

5.1.2 Tier 2, 3—The sUAS manufacturer shall record all
uses and versions of EDS in the sUAS.

5.1.3 Tier 3—The sUAS manufacturer shall have an orga-
nizational response plan to address a flight critical software
malfunction or penetration for sUAS Software.

5.1.3.1 The sUAS manufacturer should make information
available to all users of its sUAS regarding the software issue
and provide guidance within 24 hours of being made aware of
the issue.

5.2 sUAS Software Architecture and Use:
5.2.1 Tier 1, 2, 3—The sUAS manufacturer shall conduct an

analysis to determine the hazards and impacts associated with
the potential malfunction, failure, or exploitation of the sUAS
Software and identify potential risk mitigation.

5.2.1.1 The analysis shall define the sUAS Software’s in-
tended function(s) and document potential failure (gracefully
or suddenly).

5.2.1.2 The analysis should be conducted using industry
best practices (see references in Appendix X1) but should
consider unique aspects of the sUAS size and operation.

5.2.1.3 Security vulnerabilities should be considered as
possible causes of hazards in performing the hazard analysis.

5.2.2 Tier 2, 3—The sUAS manufacturer shall publish an
EDS integration plan.

5.2.2.1 The plan shall document the tasks and milestones
that need to be performed to acquire and integrate the EDS.

5.2.2.2 The plan should include release gates/checkpoints/
milestones and associated criteria at one or more points during
the acquisition and integration process, as well as configuration
management for all EDS code and documents.

5.2.2.3 The EDS integration plan may be part of a larger
software integration plan or other lifecycle documentation.

5.2.2.4 The EDS integration plan should address how con-
figuration tables, data, and libraries that may be included in the
EDS are integrated.

5.2.2.5 The sUAS manufacturer shall ensure that the EDS
integration plan is folowed and track exceptions to the plan.

5.2.2.6 All exceptions to the EDS integration plan shall be
incorporated into the plan and published.

5.2.3 Tier 1, 2, 3—The sUAS manufacturer shall publish a
software development and integration plan for IDS.

5.2.3.1 The IDS development and integration plan shall
establish the software baseline and document the tasks and
milestones that need to be performed to develop the software
for a specific project.

5.2.3.2 The IDS development and integration plan should
include release gates/checkpoints/milestones and associated
criteria at one or more points in the development process, and
configuration management of code and documents.

F3201 − 16

3

 


